Assessing the performance of small wind turbines in urban areas

Daniel Drew
d.r.drew@reading.ac.uk

November 29, 2011
© University of Reading 2008
www.reading.ac.uk

Introduction

- Increased interest in microgeneration
 - Microgeneration strategy (2006)
 - Feed-in tariff (2010)

- Significant growth in number of small wind turbine
 - Installed capacity increased from 6 MW to greater than 50 MW between 2006 and 2010.
 - Increased proportion of building mounted turbines in urban areas

- Urban wind turbines are generally performing poorly
 - Warwick wind trials (2009): Average capacity factor: 0.85%
 - Energy saving trust (2009): Highest capacity factor: 3%
Why are small wind turbines located in urban areas performing poorly?

Technology

- Urban wind characteristics affect the performance of the turbines
- HAWTs do not reproduce their manufacturer’s power curves

(Encraft, 2009)
Site Assessment

Current site assessment tools do not accurately predict the wind speed at an urban site.

- DECC wind speed database
 - Mass consistent flow model (NOABL)
 - Mean error in annual mean wind speed: 42%

- Carbon Trust tool (2009)
 - Based on model developed by UK Met Office
 - Mean error in annual mean wind speed: 17%

Logarithmic wind profile

\[U(z) = \frac{u^*}{k} \ln \left(\frac{z}{z_0} \right) \]

- \(U \) = mean wind speed
- \(z \) = height
- \(U^* \) = friction velocity
- \(k \) = von Karman constant
- \(z_0 \) = roughness length
Internal boundary layer method

Mertens (2003) and Heath et al. (2007)

- IBL wind profile adjusts a reference rural wind speed, U_{ref} at a height, z_{ref} to a downwind urban value, U at height z.

$$U(z) = \frac{\ln \left[\frac{z - d}{z_{02}} \right]}{\ln \left[\frac{\delta}{z_{01}} \right]} \ln \left[\frac{\delta}{z_{01}} \right] U_{\text{ref}} \left(z_{\text{ref}} \right)$$

Greater London
Urban morphology database

- LUCID project derived dimensions of buildings in Greater London.
- Plan area ratio, $\lambda_p = \frac{A_p}{A_T}$
- Frontal area ratio, $\lambda_F = \frac{A_F}{A_T}$
- Macdonald et al. (1998) expressions

\[
\frac{z_0}{h} = \left(1 - \frac{d}{h}\right) \exp \left(-\left(0.5 \beta \frac{C_D}{\kappa^2} \left(1 - \frac{d}{h}\right) \lambda_f\right)^{-0.5}\right)
\]

\[
\frac{d}{h} = 1 + A^{-\lambda_P} (\lambda_P - 1)
\]

Annual mean wind speed
Small wind turbines

Mean capacity factor
Conclusions

• Current site assessment tools are inaccurate, particularly in urban areas.
 – DECC mean error of U: 42%
 – CT mean error of U: 17%

• Improved representation of urban surface using building morphology data

• Wind map provides best resource for assessing performance of small wind turbines in the region.

• There is a range in the performance of small wind turbines in urban areas. This can only be identified by having improved method.
References

Carbon Trust (2011) “Carbon Trust wind speed estimator”
http://www.carbontrust.co.uk/technology/technologyaccelerator/small-wind.htm

Catalogue of European Urban Wind Turbine Manufacturers, Available at
www.urban-wind.org/pdf/CATALOGUE_V2.pdf

DTI (2005) “Microgeneration strategy: Power from the people” Available at
http://www.berr.gov.uk/whatwedo/energy/sources/sustainable/microgeneration/strategy/
page27594.html

